
CARBO HYDRATES

D.Veera Sudarshan
Lecture in CHEMISTRY
GovtDegree college
Porumamilla,kadapa

Introduction

- Carbohydrates constitute one of the most important groups of natural products.
- Carbohydrates are widely distributed in plants and animals.
- They serve as source of energy (e.g.sugars), and also as storeof energy.(e.g.Starch and Glycogen)
- The basic formula forcar bohydrates is C_X(H₂O)_Y
- Ex: Glucose, Fructose (C₆H₁₂O₆)
- Carbohydrates are defined as the optically active polyhydroxy aldehydes or ketones or substances that can be hydrolysedto either ofthem.
- Carbohydrates produced by green plantsduring photosynthesis

GlglipiAt)

thenomenclatureandfunctional group for rnonosaccharides

Number of Carbons (Gu neric munosa.ccharide name)	A) dose Functional Gnoup	Ketone Functional Gr OL	Relevant examples.
(lose)	Aldatlose	Keto <u>tri</u> ose Triulose	Glyceraldehyde, Dihydroxyacetone
4	Aldotetrase	Ketotetrose	Erythrose
(<u>Tetr</u> ase}	1140 <u>-21</u> 450	<u>Tetr</u> ulase	,
5	Akioynose	Ketoentase	Riboso,RIbulee,
Penrose)	•	Pentulose	XtU OSO
6	Aldohexase	Keto <u>hem</u> se	ci x ase, Galactoso,
(<u>Hex</u> ase)		<u>Hex</u> ulase	Ma nn0sa,FruCosa

GLUCOSE

- Glucose occurs in many plants in the free as well ascombined state.
- Glucose is aldose sugarhaving—CHO funtional group.
- It is found in grapes in abundant quantity so it is also known as "Grape sugar".
- Glucose is the main respiratory substrate in thebody.
- Other types of hexoses are converted into glucose inliver.
- It is alsocalledas Blood sugar ,Cornsugar.

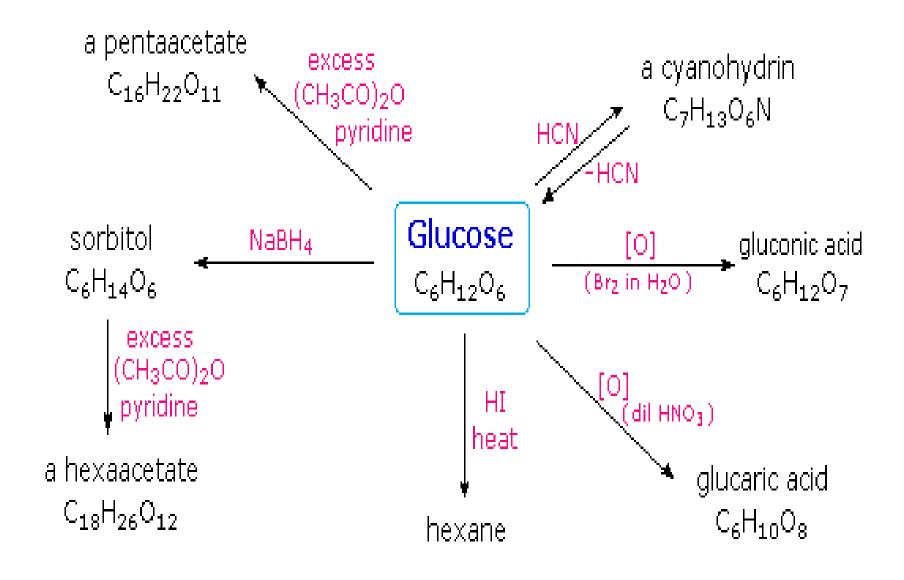
Preparation:

1.Fromsucrose

2.Fromstarch

$$(C_6H_{10}O_5)_n + nH_2O \rightarrow nC_6H_{12}O_6$$

Physical Properties of Glucose

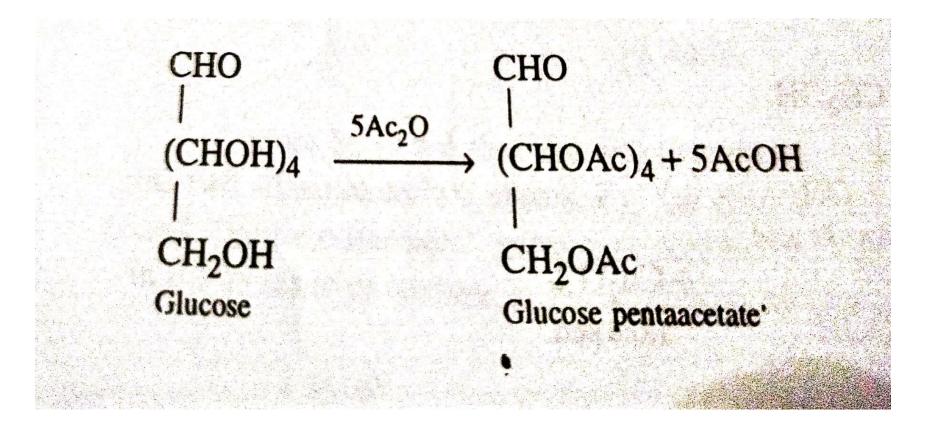

Glucose is a White Crystalline solid. m.p(146°C)

 It is extremely soluble in water ,sparingly soluble in alcohol and insoluble inether.

 It isOpticallyactive and dextrorotatory carbohydrate. So it is called as "dextrose".

• Glucose shows Mutarotation. Itexistin both α -D glucoseand β -D glucoseform.

Chemical Properties of Glucose



CONSTITUTION OF GLUCOSE

1. Molecular formula:

C₆H₁₂O₆2.Presence of five hydroxyl groups 3.Straightchain of six carbon atom 4.Presence of an aldehydic group 5.Open chainstructure

2.Presence of five hydroxylgroups Reaction with AC₂O

3. Straightchain of six carbonatoms

Reduction Reactions

1. Reaction with HI

$$CH_2OH \cdot (CHOH)_4 \cdot CHO \xrightarrow{\text{conc. HI}} CH_3 \cdot (CH_2)_3 \cdot CHI \cdot CH_3$$
 $CH_2OH \cdot (CHOH)_4 \cdot CHO \xrightarrow{\text{prolonged heating}} CH_3 \cdot (CH_2)_4 CH_3$
 $CH_2OH \cdot (CHOH)_4 \cdot CHO \xrightarrow{\text{with HI} + P} CH_3 \cdot (CH_2)_4 CH_3$
 $CH_3OH \cdot (CHOH)_4 \cdot CHO \xrightarrow{\text{with HI} + P} CH_3 \cdot (CH_2)_4 CH_3$

2. Reaction with HCN

OH

CH₂OH·(CHOH)₄·CH·CN
$$\xrightarrow{H_2O}$$
 CH₂OH·(CHOH)₄·CH·COOH

Glucose cyanohydrin

$$\xrightarrow{HI+P}$$
 CH₃·(CH₂)₄·CH₂COOH

n-Heptanoic acid

4. Presence of an aldehydic group

III.Reaction with NH₂OH & HCN

CHO
$$(CH_{2}OH)_{4} + NH_{2}OH \longrightarrow (CHOH)_{4}$$

$$(CH_{2}OH)_{4} + NH_{2}OH \longrightarrow (CHOH)_{4}$$

$$(CHOH)_{4} + CHOH)_{4} + CHOH)_{4}$$

$$(CHOH)_{4} + CHOH)_{4} + CHOH$$

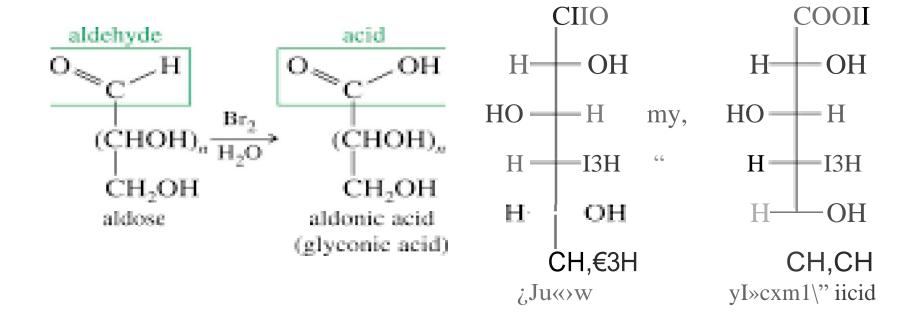
$$(CHOH)_{4} + CHOH)_{4}$$

$$(CHOH)_{4} + CHOH)_{5}$$

$$(CHOH)_{4} + CHOH)_{6}$$

$$(CHOH)_{4} + CHOH)_{6}$$

$$(CHOH)_{4} + CHOH)_{6}$$


Oxidation Reactions

$$\begin{array}{cccc} CH_2OH\cdot (CHOH)_4CHO + Ag_2O & \longrightarrow CH_2OH\cdot (CHOH)_4COOH + 2Ag\downarrow \\ & Glucose & Tollen's & Gluconic acid & Silver \\ & reagent^1 & mirror \\ \end{array}$$

$$\begin{array}{cccc} CH_2OH\cdot (CHOH)_4CHO + 2CuO & \longrightarrow CH_2OH\cdot (CHOH)_4\cdot COOH + Cu_2O\downarrow \\ & Glucose & Fehling & Gluconic acid & Red. ppt. \\ & solution^2 & \end{array}$$

D-glucose a-plucaric aci<J an alclaric acicl

Reaction with PhenylHydrazene

CHO

CH =NNHC₆H₅

CHOH

CHOH

CHOH

(CHOH)₃
$$\xrightarrow{C_6H_5NHNH_2}$$
 (CHOH)₃ $\xrightarrow{C_6H_5NHNH_2}$ $\xrightarrow{-C_6H_5NH_2,-NH_3}$

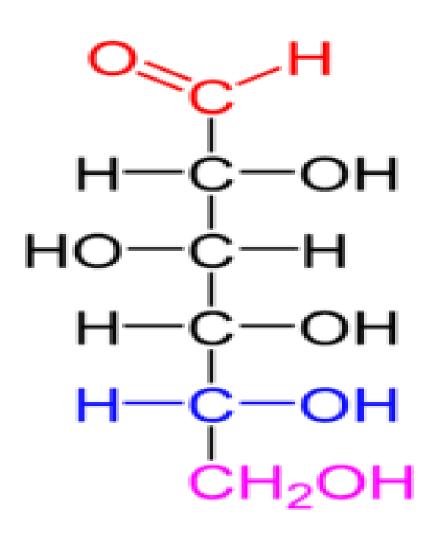
CH₂OH

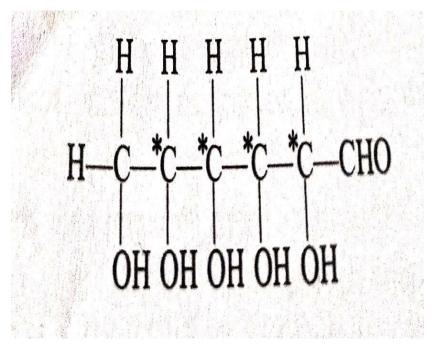
CH₂OH

CH₂OH

CH₂OH

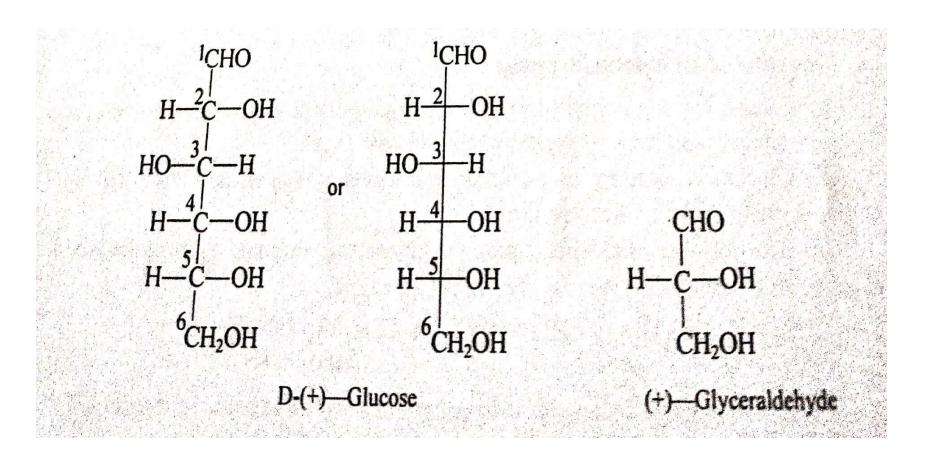
CH = NNHC₆H₅


CH₂OH


CH₂OH

CH₂OH

Glucosazone


OPEN CHAIN STRUCTURE OFGLUCOSE

CONFIGURATION OFD-(+)-GLUCOSE

Asymmetric carbon atoms:4 2⁴=16 optically active forms, i.e., 8 pairs of enantiomers

Reaction with PhenylHydrazene

CHO

CH = NNHC₆H₅

CHOH

CHOH

CHOH

(CHOH)₃
$$\frac{C_6H_5NHNH_2}{-H_2O}$$
 (CHOH)₃ $\frac{C_6H_5NHNH_2}{-C_6H_5NH_2,-NH_3}$

CH₂OH

CH₂OH

CH₂OH

CH = NNHC₆H₅

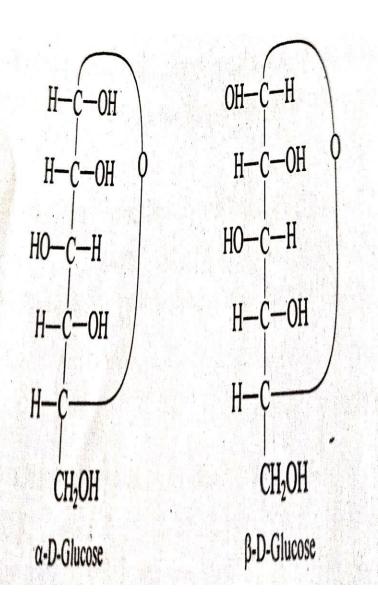
CH₂OH

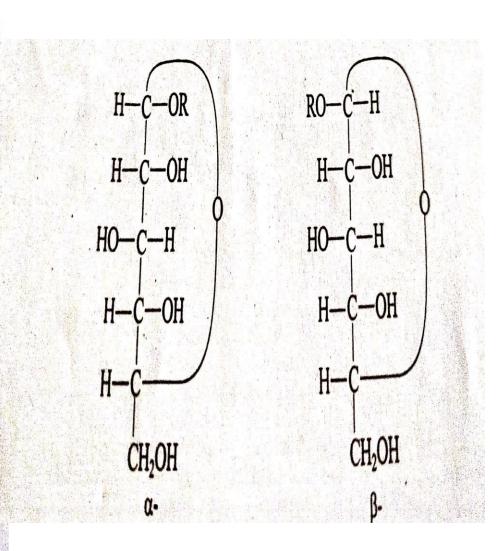
CH₂OH

CH₂OH

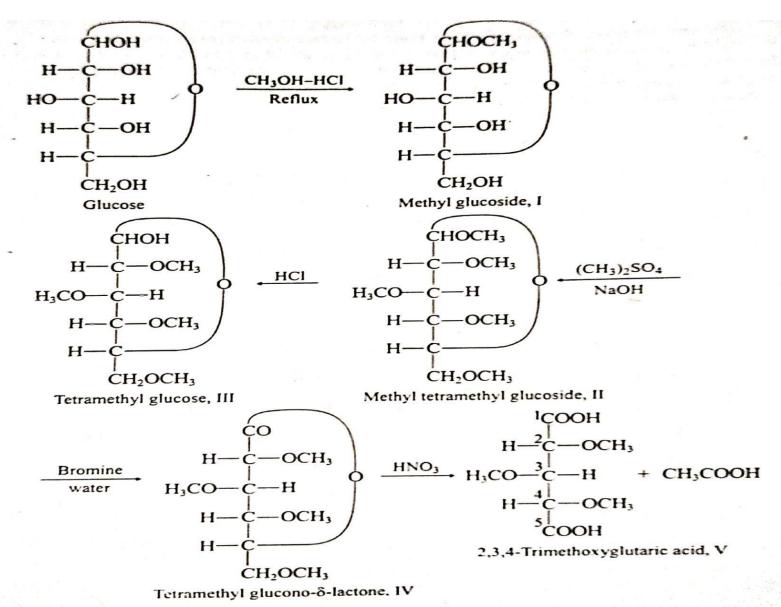
CH₂OH

CH₂OH

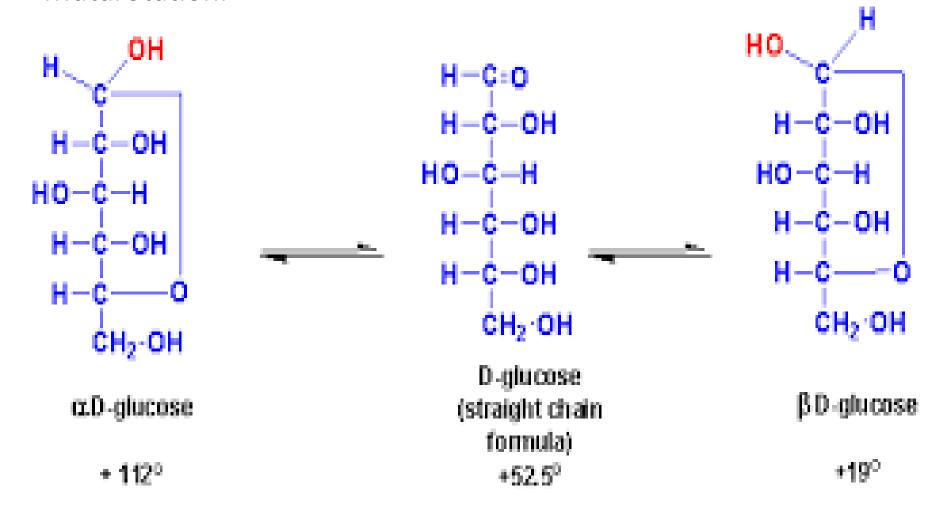

CH₂OH


CH₂OH

OBJECTIONS TO OPEN CHAIN STRUCTURE OF GLUCOSE


- 1.Glucose does not restoreSchiffs reagentcolour.
- 2.It does not formabisulphite and aldehydeammoniacompound.
- 3.It forms two isomeric penta acetates neither of which reacts with carbonylreagents.
- 4.The existence of two isomeric glucoses and the change in specific rotation (mutarotation) is not explained.
- 5.Glucose reacts with methanol in presence of dryHCl to form two isomericglucosides.

RING STRUCTURE OF GLUCOSE

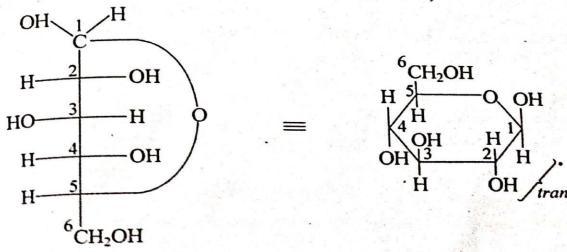


DETERMINATION OF RING SIZE

Mutarotation of D-Glucose

Mutarotation: The optical rotation of a solution is changes gradually until a constant rotation is attained. This is called as Mutarotation.

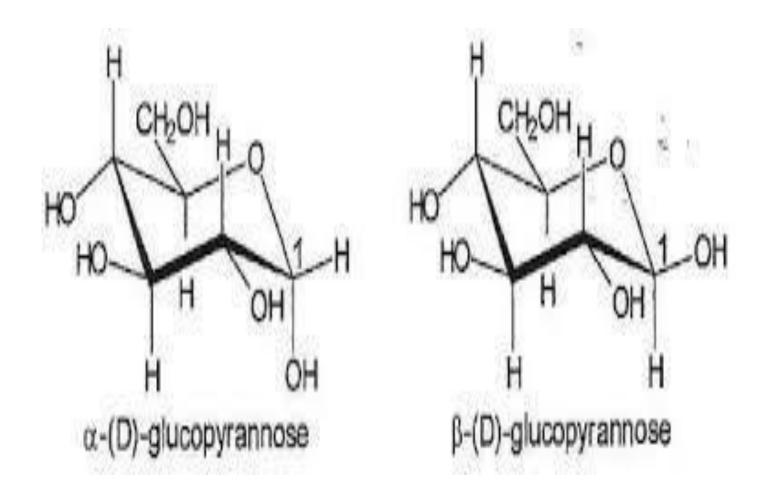
CONFIRMATIONS OF D-(+)-GLUCOSE


Fischer structure

Fischer structure

nay

Haworth structure


α-D-Glucopyranose (cis form)

Haworth structure

β-D-Glucopyranose (trans-form)

CHAIR CONFIRMATIONAL STRUCTURES OF D-(+)-GLUCOSE

CONCLUSION

- Glucosehas six memberedAldohexose.
- Glusose has a openchairstructure but some objections are their for open chainstructure.
- Glucose has a ring structure. In glucose cyclic ring is formed between C₁ and C₅ Carbonatoms.
- Glucose exist in Fisher, Howarth structures and Chair conformationalstructures.

THANK YOU